三角形的面積=底×高÷2。S=a×h÷2
正方形的面積=邊長×邊長S=a2
長方形的面積=長×寬公式S=a×b
平行四邊形的面積=底×高S=a×h
梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
內(nèi)角和:三角形的內(nèi)角和=180度。
長方體的表面積=(長×寬+長×高+寬×高)×2 S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6公式:S=6a2
長方體的體積=長×寬×高公式:V=abh
長方體(或正方體)的體積=底面積×高公式:V=abh
正方體的體積=棱長×棱長×棱長V=a3
圓:周長=直徑×πL=πd=2πr
面積=半徑×半徑×πS=πr2
圓柱:
側(cè)面積=底面的周長×高S=ch=πdh=2πrh
表面積=底面的周長×高+圓的面積×2 S=ch+2s=ch+2πr2
圓柱的體積=底面積×高。V=Sh
圓錐的體積=1/3底面積×高。V=1/3Sh
二、單位換算長度單位:
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
面積單位:
1平方千米=100公頃1公頃=10000平方米
1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
1畝=666.666平方米。
體積單位
1立方米=1000立方分米1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升1毫升=1立方厘米
重量單位
1噸=1000千克1千克=1000克=1公斤=1市斤
三、算術(shù)
1、加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。
2、加法結(jié)合律:a+b=b+a3、乘法交換律:a×b=b×a
4、乘法結(jié)合律:a×b×c=a×(b×c)
5、乘法分配律:a×b+a×c=a×b+c
6、除法的性質(zhì):a÷b÷c=a÷(b×c)
7、除法的性質(zhì):
①、在除法里,被除數(shù)和除數(shù)同時擴(kuò)大(或縮?。┫嗤谋稊?shù),商不變。
②、O除以任何非O的數(shù)都等于O。
③、簡便乘法:被乘數(shù)、乘數(shù)末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都添在積的末尾。
8、有余數(shù)的除法:被除數(shù)=商×除數(shù)+余數(shù)
9、方程、代數(shù)與等式
等式:等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式。
等式的基本性質(zhì):等式兩邊同時乘以(或除以)一個相同的數(shù),等式仍然成立。
方程式:含有未知數(shù)的等式叫方程式。
一元一次方程式:含有一個未知數(shù),并且未知數(shù)的次數(shù)是一次的等式叫做一元一次方程式。一元一次方程式的例法及計算。即例出代有χ的算式并計算。
代數(shù):代數(shù)就是用字母代數(shù)的各種運算。
代數(shù)式:用字母表示的式子叫做代數(shù)式。如:3x、ab+c、9=a+5
四、分?jǐn)?shù)
分?jǐn)?shù):把單位“1”平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分?jǐn)?shù)。
分?jǐn)?shù)大小的比較:
同分母的分?jǐn)?shù)相比較,分子大的大,分子小的小。
異分母的分?jǐn)?shù)相比較,先通分然后再比較;若分子相同,分母大的反而小。
分?jǐn)?shù)的加減法則:
同分母的分?jǐn)?shù)相加減,只把分子相加減,分母不變。
異分母的分?jǐn)?shù)相加減,先通分,然后再加減。
倒數(shù)的概念:
1.如果兩個數(shù)乘積是1,我們稱一個是另一個的倒數(shù)。這兩個數(shù)互為倒數(shù)。
2.1的倒數(shù)是1,0沒有倒數(shù)。
3、分?jǐn)?shù)除以整數(shù)(0除外),等于分?jǐn)?shù)乘以這個整數(shù)的倒數(shù)。
分?jǐn)?shù)的基本性質(zhì):
1、分?jǐn)?shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分?jǐn)?shù)的大小不變;
2、分?jǐn)?shù)的除法則:除以一個數(shù)(0除外)=乘這個數(shù)的倒數(shù)。
真分?jǐn)?shù):分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù)。
假分?jǐn)?shù):分子比分母大或者分子和分母相等的分?jǐn)?shù)叫做假分?jǐn)?shù)。假分?jǐn)?shù)大于或等于1。
帶分?jǐn)?shù):把假分?jǐn)?shù)寫成整數(shù)和真分?jǐn)?shù)的形式,叫做帶分?jǐn)?shù)。
分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分?jǐn)?shù)的大小不變。
數(shù)量關(guān)系計算公式
單價×數(shù)量=總價2、單產(chǎn)量×數(shù)量=總產(chǎn)量
速度×?xí)r間=路程4、工效×?xí)r間=總量
加數(shù)+加數(shù)=和一個加數(shù)=和-另一個加數(shù)
被減數(shù)-減數(shù)=差減數(shù)=被減數(shù)-差被減數(shù)=減數(shù)+差
因數(shù)×因數(shù)=積一個因數(shù)=積÷另一個因數(shù)
被除數(shù)÷除數(shù)=商除數(shù)=被除數(shù)÷商被除數(shù)=商×除數(shù)
比什么叫比:
1、兩個數(shù)相除就叫做兩個數(shù)的比。如:2÷5或3:6或1/3
2、比的前項和后項同時乘以或除以一個相同的數(shù)(0除外),比值不變。
什么叫比例:
1、表示兩個比相等的式子叫做比例。如3:6=9:18
2、比例的基本性質(zhì):在比例里,兩外項之積等于兩內(nèi)項之積。
解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
正比例:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應(yīng)的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關(guān)系就叫做正比例關(guān)系。如:y/x=k(k一定)或kx=y
反比例:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系就叫做反比例關(guān)系。如:x×y=k(k一定)或k/x=y
五、百分?jǐn)?shù)百分?jǐn)?shù):表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),叫做百分?jǐn)?shù)。百分?jǐn)?shù)也叫做百分率或百分比。
把小數(shù)化成百分?jǐn)?shù),只要把小數(shù)點向右移動兩位,同時在后面添上百分號。
把百分?jǐn)?shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。
把分?jǐn)?shù)化成百分?jǐn)?shù),通常先把分?jǐn)?shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),
小數(shù)自然數(shù):用來表示物體個數(shù)的整數(shù),叫做自然數(shù)。0也是自然數(shù)。
純小數(shù):個位是0的小數(shù)。
帶小數(shù):各位大于0的小數(shù)。
循環(huán)小數(shù):一個小數(shù),從小數(shù)部分的某一位起,一個數(shù)字或幾個數(shù)字依次不斷的重復(fù)出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。如3.141414
不循環(huán)小數(shù):一個小數(shù),從小數(shù)部分起,沒有一個數(shù)字或幾個數(shù)字依次不斷的重復(fù)出現(xiàn),這樣的小數(shù)叫做不循環(huán)小數(shù)。如3.141592654
無限循環(huán)小數(shù):一個小數(shù),從小數(shù)部分到無限位數(shù),一個數(shù)字或幾個數(shù)字依次不斷的重復(fù)出現(xiàn),這樣的小數(shù)叫做無限循環(huán)小數(shù)。如3.141414……
無限不循環(huán)小數(shù):一個小數(shù),從小數(shù)部分起到無限位數(shù),沒有一個數(shù)字或幾個數(shù)字依次不斷的重復(fù)出現(xiàn),這樣的小數(shù)叫做無限不循環(huán)小數(shù)。如3.141592654……利潤利息=本金×利率×?xí)r間(時間一般以年或月為單位,應(yīng)與利率的單位相對應(yīng))
利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率
六、倍數(shù)與約數(shù)公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。公因數(shù)有有限個。其中的一個叫做這幾個數(shù)的公約數(shù)。
最小公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù)。公倍數(shù)有無限個。其中最小的一個叫做這幾個數(shù)的最小公倍數(shù)。
互質(zhì)數(shù):公約數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù)。相臨的兩個數(shù)一定互質(zhì)。兩個連續(xù)奇數(shù)一定互質(zhì)。1和任何數(shù)互質(zhì)。
通分:把異分母分?jǐn)?shù)的分別化成和原來分?jǐn)?shù)相等的同分母的分?jǐn)?shù),叫做通分。(通分用最小公倍數(shù))
約分:把一個分?jǐn)?shù)的分子、分母同時除以公約數(shù),分?jǐn)?shù)值不變,這個過程叫約分。
最簡分?jǐn)?shù):分子、分母是互質(zhì)數(shù)的分?jǐn)?shù),叫做最簡分?jǐn)?shù)。分?jǐn)?shù)計算到最后,得數(shù)必須化成最簡分?jǐn)?shù)。
質(zhì)數(shù)(素數(shù)):一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質(zhì)數(shù)(或素數(shù))。
100以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)
1既不是質(zhì)數(shù)也不是合數(shù),也不是合數(shù)。
質(zhì)因數(shù):如果一個質(zhì)數(shù)是某個數(shù)的因數(shù),那么這個質(zhì)數(shù)就是這個數(shù)的質(zhì)因數(shù)。
分解質(zhì)因數(shù):把一個合數(shù)用質(zhì)因數(shù)相成的方式表示出來叫做分解質(zhì)因數(shù)。
倍數(shù)特征:
2的倍數(shù)的特征:個位是0,2,4,6,8。
3(或9)的倍數(shù)的特征:各個數(shù)位上的數(shù)之和是3(或9)的倍數(shù)。
5的倍數(shù)的特征:個位是0,5。
奇數(shù)與偶數(shù)
偶數(shù):個位是0,2,4,6,8的數(shù)。
奇數(shù):個位不是0,2,4,6,8的數(shù)(個位是1,3,5,7,9)。
偶數(shù)±偶數(shù)=偶數(shù)奇數(shù)±奇數(shù)=奇數(shù)奇數(shù)±偶數(shù)=奇數(shù)
偶數(shù)個偶數(shù)相加是偶數(shù),奇數(shù)個奇數(shù)相加是奇數(shù)。
偶數(shù)×偶數(shù)=偶數(shù)奇數(shù)×奇數(shù)=奇數(shù)奇數(shù)×偶數(shù)=偶數(shù)
相臨兩個自然數(shù)之和為奇數(shù),相臨自然數(shù)之積為偶數(shù)。
如果乘式中有一個數(shù)為偶數(shù),那么乘積一定是偶數(shù)。